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Abstract. The Edwards-Anderson spin-glass model with m-component spins is studied in 
the low-temperature phase within the context of a Q3 theory and the limit m + cc is taken. 
Perturbation theory for the order parameter reveals at one-loop order the following unusual 
properties: (i) the perturbation expansion fails due to the appearance of infrared sin- 
gularities for dimensionalities d s 8 where d, = 8 is also the upper critical dimension of 
the theory, and (ii) for d = 8 the expected terms involving In( T,- T )  are absent thus 
implying a breakdown of scaling. 

1. Introduction 

In the theory of phase transitions, the study of certain simplifying limits has long been 
fashionable. For the case of interacting spin systems, for which a generic model is the 
classical Heisenberg model with Hamiltonian 

2e= - f C J j , s , . s ,  >, 
there is a much studied limit in which the dimensionality m of the spin space tends 
to infinity independently of the spatial dimensionality d. This limit often leads to 
considerable simplifications, and expansions about it, i.e. in powers of I,”, have been 
used with considerable success in the theory of critical phenomena (Ma 1976 and 
references therein). 

In this paper we consider the m -+ oc limit of the Edwards-Anderson spin-glass 
model in which the spins S, are m-dimensional vectors of fixed m”‘, occupying the 
sites of a hypercubic lattice in d spatial dimensions and the interactions Jll are 
independent identically distributed random variables which couple nearest-neighbour 
pairs of sites (Edwards and Anderson 1975). As usual, the { J I l }  are taken to be 
‘quenched’ random variables, i.e. the free energy has to be calculated for fixed disorder 
and then an average taken over an ensemble of disorder configurations. In practice, 
the configuration average is usually carried out first, using the replica trick (Edwards 
and Anderson 1975). The use of this trick for symmetric replicas leads to a wrong 
result in the case of spin glasses with a finite number of components due to the lack 
of ergodicity. However, we believe this method provides an exact solution in the m + 

limit. This idea is supported on one side, by numerical calculations (Morris et al 1986) 
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which show that even for low values of d the number of minima of the Hamiltonian 
decreases rapidly as m increases and, on the other hand, the replica symmetric method 
gives an exact solution in the m + CO limit of the long range m-vector model (Kosterlitz 
et a1 1976). 

The critical properties of this model have been studied in the high-temperature 
phase by Green et a1 (1982) who found that for m = 03 there is an increase of the 
upper critical dimension, above which mean-field critical behaviour is expected, from 
six, for the finite m-vector spin-glass model (Harris et al 1976), to eight. The mechanism 
responsible for the shift in the value of the critical dimensionalities as m + 00 seems 
to be related to the fact that in this limit the quadrupole fields (to be defined later) 
play an important role as they couple different vector components. For m finite the 
quadrupole fields do not go 'soft' as they have a larger 'mass' than the other modes. 

In  the present work we consider the low-temperature phase. In order to solve this 
model we will make a calculation parallel to those of Bray and Moore (1979a, b), that 
is, we will make use of the replica method with a symmetric ansatz for the Ginzburg- 
Landau-Wilson (GLW) free-energy functional. In this case, we will work to cubic order 
O(Q') where Q$( x)  is the order-parameter field, and calculate the spin-glass order 
parameter Q = (0s)  (a f p )  to one-loop order. Pytte and Rudnick (1978) considered 
a truncated version of this free-energy functional which included terms to order Q4 
and found instabilities which showed up as negative gaps in the correlation functions. 
The instabilities (negative gaps) of the Q4 model correspond to marginally stable 
solutions (gapless modes) of the Q3 model within mean-field theory. 

2. The model 

As we mentioned before, in this paper we will make use of the replica symmetric 
method in order to make analytical progress by averaging over the disorder at the 
outset. The price to pay for this mathematical simplification is that it will not be 
possible to take the m -+ limit a b  initio, but rather the calculation has to be performed 
for m finite and the limit taken at the end. In the replica method one calculates the 
free energy -limn+o k T ( ( Z " } ,  - I ) / n  where Z{J,J} is the partition function ofthe system 
for a particular set of bonds {J,J}  and ( ), denotes the average over all possible bond 
configurations which are distributed according to 

P ( J I J )  = [A(2n)']-' exp(-J$/2A2) 

for i , j  nearest neighbours and zero otherwise. For integer n one has 

where S,, is the Cartesian component p of the spin SP located at the site i and belonging 
to the replica a, and the trace is to be taken over all spin configurations. After averaging 
over all bond realisations we obtain 

1 (Z"), = Tr exp 1 K ,  2 S:SypS?& ( V Q P F v  

where K ,  = + ( A /  T)' for i, j nearest neighbours and zero otherwise, and T is the 
temperature. In order to decouple the lattice sites we introduce a set { } of auxiliary 
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fields and 

( Z ? ,  = 

obtain 

The order-parameter field QGPv has a part QcPu ( a  f p )  which is off-diagonal in replica 
space and represents spin-glass order, and a diagonal part a:,", which represents 
quadrupolar order. The trace (in spin space) of the latter field, i.e. QD::", represents 
a 'hard' or non-critical mode. I t  is convenient to qeparate the Q fields into their 
diagonal and off-diagonal parts, the latter being the spin-glass field of Harris er ul 
(1976). The diagonal part may be written as 

( 2 )  
where TZU is a traceless tensor which has been called the quadrupole field (Green et 
a1 1982). With the decomposition (2),  we can write 

cQFuQ;;L= mQP"QP"+c TZ:,T,":: ( 3 a )  

Qp,", + QP"S,, + TG, 

Using (3) in (11, we find that the fields 0:" decouple from the other fields and may 
be integrated out of the problem. Expanding the external exponent in ( 1 )  to third 
order in the spin-glass QGPV and the quadrupole TFu fields, carrying out the spin traces, 
re-exponentiating and taking the continuum limit yields a field theory 

where the measure DQ includes both spin-glass and quadrupolar fields and F is the 
GLW free-energy density given by 

where T and w are positive functions of the lattice spacing, the number of nearest 
neighbours and the temperature, and r a ( T -  T,) .  I n  this expression the sums are 
taken over all indices, and the restrictions QEz = 0, Z P  TZP = 0 apply. 

3. Mean-field theory 

The mean-field solution can be found by using variational principles, i.e. by extremising 
the free-energy functional. We seek a replica symmetric solution of the form 

O$(X, =Q&, 

TE,(x)  = 0. 
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By introducing this solution into the free-energy functional and demanding (1/ n )  
aF/aQ = 0 we find two stationary points given by Q = 0 and Q = r / [  w (  n - 2 ) ] .  In order 
to investigate the stability of these solutions against fluctuations, we need to expand 
the free-energy density about these stationary points. To this end we write 

Q$(x)=Q6,,+Rz! ( 5 a )  

TE,(x)  = Szv ( 5 b )  

where RE! and Szv are fluctuations around the mean-field solution satisfying the 
restrictions RzZ = 0, E, SE,, = 0. If we substitute the Fourier transforms of equations 
(5) into (4), we get the effective Hamiltonian as a function of the fluctuations about 
the mean-field solution in the momentum space. Working in this space will be 
convenient since different Fourier components decouple to quadratic order. We can 
now calculate the correlation functions according to 

where ( ) represents the correlation to be calculated and F is the free-energy functional. 
These correlations will have the form 

The stability condition requires the squared ‘masses’ M 2  to be positive since for M’ < 0 
the Gaussian integrals do not converge. In the case Q=0, to quadratic order, the 
effective free energy takes the form 

F = a 2 (q2+  r ) (  RE!)’+$ [ q 2 +  r +  T / (  m + 2 ) ] ( S E u ) 2 .  

Therefore there are two different correlation functions given by 

which indicates that the solution Q = 0 is stable (or metastable) for r > 0, i.e. in the 
high-temperature region T > T,. 

I n  a similar way we can see that the second solution given by Q = r / [  w ( 2  - n)] is 
unstable in the high-temperature region. In the low-temperature phase, namely for 
r < 0, we have Q = j r / / [ w ( 2  - n ) ]  and after using equations ( 5 )  we can write the resulting 
free energy as 

+ l r ”  Sz,R;t 
2( m + 2 ) (  n - 2 )  
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wm 
2 ( m + 2 )  

+- C S ; ~ R ; ; R $ .  

By using 90- 9, as the free-energy functional we will calculate exactly the correlation 
functions. Subsequently the perturbation (- s2) will generate a systematic expansion 
in powers of w2. The first step is to calculate the ‘bare’ propagators (( ))o defined by 
using so as the free-energy functional in (6). In this case the RE! and the off-diagonal 
S;” terms are completely decoupled and their correlation functions can be found by 
performing independent Gaussian integrals. In  this way we obtain 

The diagonal S fields are not independent as they are coupled due to the traceless 
condition. For them we have 

These ‘bare’ propagators will be denoted as follows: 

If we now calculate the propagators by using 
functional’ in (6), we will obtain the correlation 
‘dressed’ propagators (( ))o-l will be given by 

F = so- 9, (7) as the ‘free-energy 
functions calculated exactly. These 

where (( ))o are the ‘bare’ propagators given by equations (8)-(10) and the last sum 
runs over the ‘connected’ diagrams. There exist 23 different ‘dressed’ propogators 
divided into two decoupled groups that we will call diagonal and off-diagonal sectors. 
They will be considered separately. 
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3.1. Diagonal sector 

The diagonal sector includes the following fourteen correlation functions: 

GI = (REP, ( 4  ) R  ( -4 1) GI, = ( R ; P , ( d R : P ( - q ) )  

G? = (R;P,wR;;(-q)) G I =  (R;P,(s)R:y'(-s)) 

G7 = (R;P,(q)R:",-q)) G I  = (R;p , (S)R%-s) )  

G,  = (s;+(q)s:+(-q)) G, ,  = ( S ; J q ) s 9 - q ) )  

Gti = (R;;(q)S;,( - q ) )  G,, = (R;p,(S)s:, ( - 9 ) )  

G7 = (R;; (q)s ; , ( -q) )  G I  = (R;p,(q)Sb, ( - 4 ) ) .  

G4 = ( s ; + ( q ) S ; + ( - q ) )  G41 = (s;+(q)sEv(-q)) 

In all of them (Y # p f y # S and p # v. Figure 1 shows the Dyson-type equations 
corresponding to two typical propagators for n finite. In these graphs double lines 
represent the 'dressed' propagators, the open (0) and full ( 0 )  circles carry the factors 
l r 1 / (2 -  n )  and l r l m / ( 2 -  n ) ( m  + 2 )  respectively, and the coefficient corresponding to 
each graph indicates the existence of other graphs with the same value as the graphs 
shown but different labelling. The remaining Dyson-type equations can be found 
elsewhere (Viana 1985). After taking the n + 0 limit, the diagonal propagators satisfy 
the following equations (where the dependence on q has not been written explicitly): 

G I  =g{l+0[-4G,]+*[2G,]} 

G7 = g{0[4G? -8GT] + *[2G7]} 

G ,  = 2f( 1 - 1/ I*{[ Gti - GI 1 - 21 G, - G I  I >  
G, = g { 0 [ - 2 ( G 6 +  G I 1  + *[G4+ G,l} = 2f(1- l /m)*{[G,  - G,, l -  2[G2- G2il} 

C ,  = g{O[ 2 Gti - 6G,] + *[2 C,]} = 2f( 1 - 1/ m )*{  -3[ C7 - C,,] + 2[ G2 - G 2 , ] }  

GI, = g{0[-4G,,1+*[2Gti,l} 

G I  = g{0[4Gz, - ~ ~ , , 1 + * [ 2 G , , I ~  

G2 = g{O[ GI -2G2 - 3 G , ] + * [ G , +  G I )  
G4 = 2f( 1 - 1/ m){  1 - *[ G, - Gtil]} 

G I  = gIO[ GI 1 - 2 G -  3 G I 1  + * [ G I  + G7Ill 

G,, = -(2f/m){1 - * [ G , -  G6,N 

ab  ac ac ab bc ac + - 
ab ac 

6, = 
1 1  11 11 .-, 11 11 11 11 11 

ob ,ad ac ab - b d  ac 
11 11 11 + In-31 1 1  ,1 11 + in-31 

ab a ac ab b ac 
11 11 11 11 11 11 

t - 

a a 

11 11 11 '1 11 

a ab a 

11 
-t O -  ----_-I- t i n - 1  j ------- G4 = 

Figure 1. Diagrammatic expansion for the propagators C2 and G,. Single and double 
lines represent 'bare' and 'dressed' propagators respectively. The open (0) and full  ( 0 )  

circles carry the factors l r l / ( 2 - n )  and I r l m / ( 2 - n ) ( m + 2 )  respectively. 
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with g and  f given by equations (8) and (9) .  I f  we make the change of variables 

G ,  = G, + i m  - 1 ) G , ,  

x, = G, - G , ,  

(11) 

(12) 

for i = 1, . . . , 7, then these equations decouple into two sets { G , }  and { X ! } .  By solving 
the equations for the first set we find 

G , = O  i = 4,. . . , 7 .  i 16) 

There are some simple combinations of these propagators which have simple poles in 
the q plane and therefore correspond to ‘pure’ modes. These combinations are given 
by 

G ~ = G , - ~ G ~ + ~ G ~ =  1 / ( q 2 + i r / )  

G R = G ,  -2G,+G 3 = 1, q2. 

We have denoted them G8 and GK because they are the infinite-vector analogues to 
the ‘breathing mode’ and  the ‘replicon mode’ for the finite m case (see Bray and Moore 
(1979a, b) for a discussion). The remaining seven propagators { X , }  are found to be 
given in order l / m  by 

X, =; ( q 4 +  q2/rl + lr12) +- (7 [q4~-4 /r l ’ )  + q2(-4/r/’  - lrI2.) + (81r14-2~r13~)]) 
1 1 1  

9 “ 4  
(17) 
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There is one combination of propagators X corresponding to a ‘pure’ mode; this is 
given by 

XR = x, -2x2+x3 = l/$. 

The values of G,,  G , ,  ( i  = 1, . . . , 7 )  can now be obtained by inverting equations (1 1) 
and (12), i.e. 

G t = - G + ( 1 - ~ ) X 1  1 
m 

1 
m G, 1 = - [Q; I - XI 1 

with 6, and XI given by (13)-(16) and (17)-(23) respectively. From the result obtained 
we can see that in the m +CO limit all these propagators are either massless or zero. 
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If we now make the substitutions 

Fi = Cir+ Gis Fz = Gzz + Gzs 

F, = 2G,2 i = 3 , .  . . , 7  

we can see that these new variables { F , }  satisfy the same equations as {X,}. Therefore, 
F, = X, for i = 1 , .  . , , 7  with X, given by equations ( 1 7 ) - ( 2 3 ) .  It is also convenient to 
define 

H I  = G I > -  Gi3 HI = G22 - G p  . 
These combinations correspond to ‘massless’ modes as they satisfy 

Now it is easy to obtain the propagators included in the off-diagonal sector by using 
the relations 

G,: = $ [ X ,  + H ! ]  

G,3 = ;[X, - H l ]  

G,> = iX, 

i = 1 , 2  

i = 1 , 2  

i = 3 , .  . . , 7  

with X, and 23, given by equations ( 1 7 ) - ( 2 3 ) ,  and ( 2 4 )  and (25) respectively. It  is 
important to notice that all correlation functions were found to be massless. 

4. Perturbation theory 

In this section we will make a one-loop expansion to see how the order parameter 
(O;!) is affected by the presence of the perturbation (9,) of equation (712). From (9) 
we have 

The value of (RE!) due to the cubic term is given exactly by 

where (( ))o-, are the ‘dressed’ propagators just calculated and 92 is given by ( 7 c ) .  
To lowest non-trivial order we get 

(R$(q))o-I-z = (REE(q))o.I +: (R$(q) 1 Rf”yq,)RlbY(q,)R~f(-q, - q2) 
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Figure 2. Graphs for ( R p s ) ,  the deviation of (QsJ  from its mean-field value, to the lowest 
order in perturbation theory. The terms 0 ,  0 and 0 represent a cubic interaction and carry 
the factors w / 2 ,  w m 2 / 2 ( m  + 2 ) ( m  +4)  and w m / 2 ( m + 2 )  respectively. The expression has 
to be summed over dummy replica and spin indices. 

where a, /3, p are fixed and the remaining indices are to be summed over. This 
expression can be worked out with the aid of diagrams, as shown in figure 2 where 
double lines represent ‘dressed’ propagators, and has to be summed over dummy 
replica and spin indices. In these diagrammatic expressions the signs e,@ and W carry 
the factors w/2, wm2/2( m + 2 ) (  m + 4) and wm/2( m + 2 )  respectively. The external legs 
carry q = 0 and closed loops represent the summation over all q. After taking the n + 0 
limit, we obtain 

We can see that this expression diverges for d s 8 dimensions. 

5. Discussion 

We have found that perturbation theory for the order parameter reveals, at one-loop 
order, very unusual properties. On one hand, the perturbation expansion fails due to 
the appearance of infrared singularities for all dimensionalities d 8 while d, = 8 is 
believed to be the upper critical dimensionality of the theory. On the other hand, it 
was expected that the temperature dependence of Q near T, would be changed from 
its mean-field form by terms which are logarithmic in ( T  - T,) for d = 8. Standard 
methods (Wilson 1972) would then allow, via the exponentiation of the logarithm, the 
determination of the critical exponent p (defined by Qa (T,- T)’) to order E.  

However, the expected logarithmic terms were found to be absent, which seems to 
imply a breakdown of scaling. The interpretation of these results is unclear at present. 
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